CAV Emerging Technologies

North Carolina Department of Transportation

Strategic Transportation Corridor Master Plans Visions

Corridor X: Jacksonville to Greenville (U.S. 13/U.S. 264/N.C. 11/C.F. Harvey Pkwy/U.S. 258)

U.S. 17 in Onslow County to U.S. 64E in Edgecombe County

Draft: March 14, 2022

March 2022

Kimley » Horn

Table of Contents

1	Overview and Project Background	2
2	Technology Strategies	3
Li	st of Tables	
	_	
Tal	ble 2. Additional Strategies	4
Ta	able of Acronyms	
	TSPM	Automated Traffic Signal Performance Measures
С	CTV	Closed-Circuit Television (Cameras)
C	V	Connected Vehicles
D	MS	Dynamic Message Signs
E,	V	Emergency Vehicle
E,	VA	Emergency Vehicle Alert
Н	SR	Hard Shoulder Running
IC	CM	Integrated Corridor Management
IN	ЛАР	Incident Management Assistance Patrol
ΙT	-S	Intelligent Transportation Systems
L	AN	Local Area Network
Ν	CDOT	North Carolina Department of Transportation
R	WIS	Road Weather Information System
S	CMS	Security Credential Management System
S	РаТ	Signal Phasing and Timing
S	тс	Strategic Transportation Corridors
S	TOC	Statewide Transportation Operations Center
TI	MC	Transportation Management Center
W	/EA	Wireless Emergency Alert
W	/WD	Wrong Way Driving

1 Overview and Project Background

This memorandum presents base and future year mobility analyses for Corridor X (U.S. 13/U.S. 264/N.C. 11/C.F. Harvey Pkwy/U.S. 258) of the North Carolina Strategic Transportation Corridors (STC).

1.1 Overview of Strategic Transportation Corridors

In 2015, the North Carolina Department of Transportation (NCDOT) identified a network of key multimodal transportation corridors called Strategic Transportation Corridors (STC). Identifying these STCs support smart planning, help set long-term investment decisions, and ensure that North Carolina's economic prosperity goals are achieved. The STCs are intended to promote transportation system connectivity, provide high levels of mobility, and improve access to important state and regional activity centers. A key element in the advancement of the STCs is the development of corridor master plan visions. The purpose of the master plan visions is to:

- Identify high-level visions and associated improvement strategies for corridor mobility,
- Align corridor improvements and development with a long-term vision and expected corridor performance levels, and
- Help protect the corridor's key functions as defined in the corridor profiles.

1.2 Corridor Description

Corridor X, U.S. 13/U.S. 264/N.C. 11/C.F. Harvey Pkwy/U.S. 258, is approximately 90 miles in length and spans from Jacksonville to Greenville, covering five counties (Edgecombe, Pitt, Lenoir, Jones, and Onslow) within eastern North Carolina. This corridor runs from U.S. 17 in Onslow County near Jacksonville to U.S. 64 East in Edgecombe county near Greenville along segments of U.S. 258, N.C. 11, and U.S. 13. Corridor X is used to transfer freight from Jacksonville to Greenville and provides a rural connection to economic development centers in Jacksonville, Kinston, and Greenville, including Camp Lejeune, Global TransPark, and East Carolina University. The expectation of this corridor is to provide safe, reliable mobility to these activity centers.

Corridor X also has about 11 miles of roadway within a flood zone. A total of 19 flood events occurred along U.S. 13/U.S. 264/N.C. 11/C.F. Harvey Pkwy/U.S. 258 from 2011 to 2019. These events were caused by Hurricanes Matthew and Florence and resulted in impassable road conditions and instances where affected segments of the corridor were closed. Road weather information system (RWIS) technology could be used along these sections to provide additional surveillance and warnings prior to and during an event.

2 Technology Strategies

Emerging technologies are not just additional infrastructure deployed along the roadway, but also expansions of current programs to support safe mobility and connections to economic centers. Technology strategies can either build upon existing infrastructure or deploy additional infrastructure – all to address safety concerns and provide additional tools so support mobility. Depending on the strategy, some strategies apply to an arterial setting while others are a better fit for freeway deployments.

2.1 Infrastructure

Corridor X currently includes intelligent transportation system (ITS) devices mainly along the arterial road network adjacent to U.S. 13/U.S. 264/N.C. 11/C.F. Harvey Pkwy/U.S. 258. The majority of the devices are existing municipal devices within Greenville, Kinston, and Jacksonville. These devices consist of closed-circuit television (CCTV) cameras, dynamic message signs (DMS), and vehicle detectors and speed probe data. The current ITS infrastructure is primarily used for situational awareness, providing traveler information messages to motorists reflecting travel time and incident information, and collecting data to be used for identifying congestion points. There are several ongoing projects along this corridor that will expand the number of ITS devices and provide the necessary fiber communications.

2.2 Future Strategies

Based on a qualitative review of the limitations of the existing geometrics of the corridor and potential stakeholder needs, the Department can determine the best strategy or combination of strategies that address the specific corridor needs. This assessment is typically done at the project level, although can be done as part of a longer corridor study. A few steps should be taken prior to deployment of future strategies. These steps include:

- Connection to signal central server
- Freeway Guideline (for installation and use)
- Seasonal considerations and preparation (i.e., hurricanes)

Table 1 shows possible strategies for the arterial segment of Corridor X. **Table 2** includes additional strategies to be considered to provide additional information to motorists.

Table 1. Arterial Strategies

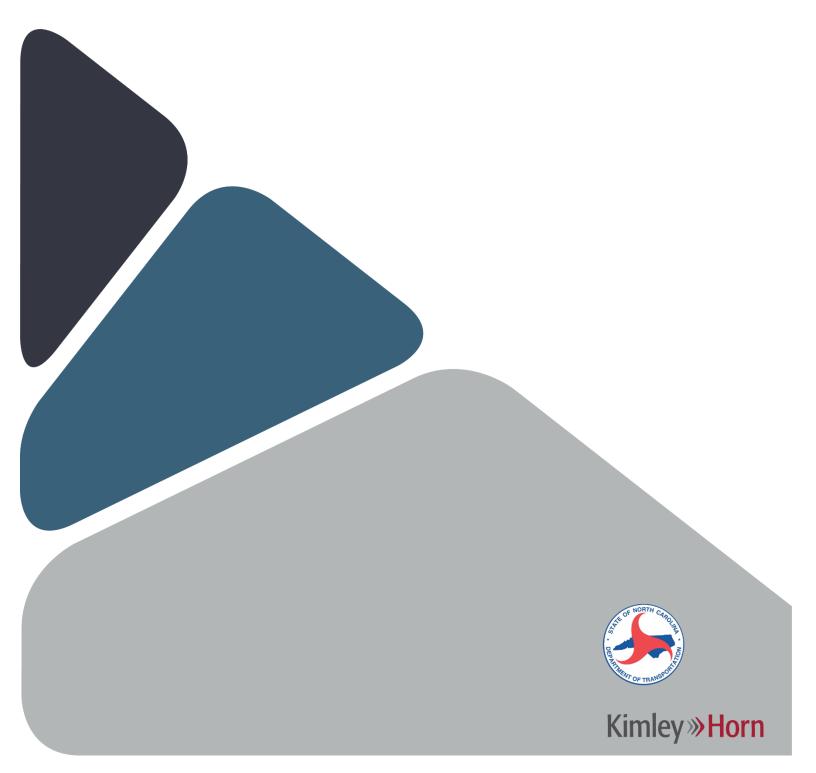
Arterial Strategies	Description
Ethernet Communications	Standard communication protocol used to develop local area
	networks (LAN); Ethernet communications are used for signal
	controllers to communicate with a central server and allow for
	remote adjustments.
Automated Traffic Signal	The collection and analysis of high-resolution traffic controller data
Performance Measures (ATSPM)	and conversion of the data into actionable performance measures;
	for proactive signal system management.

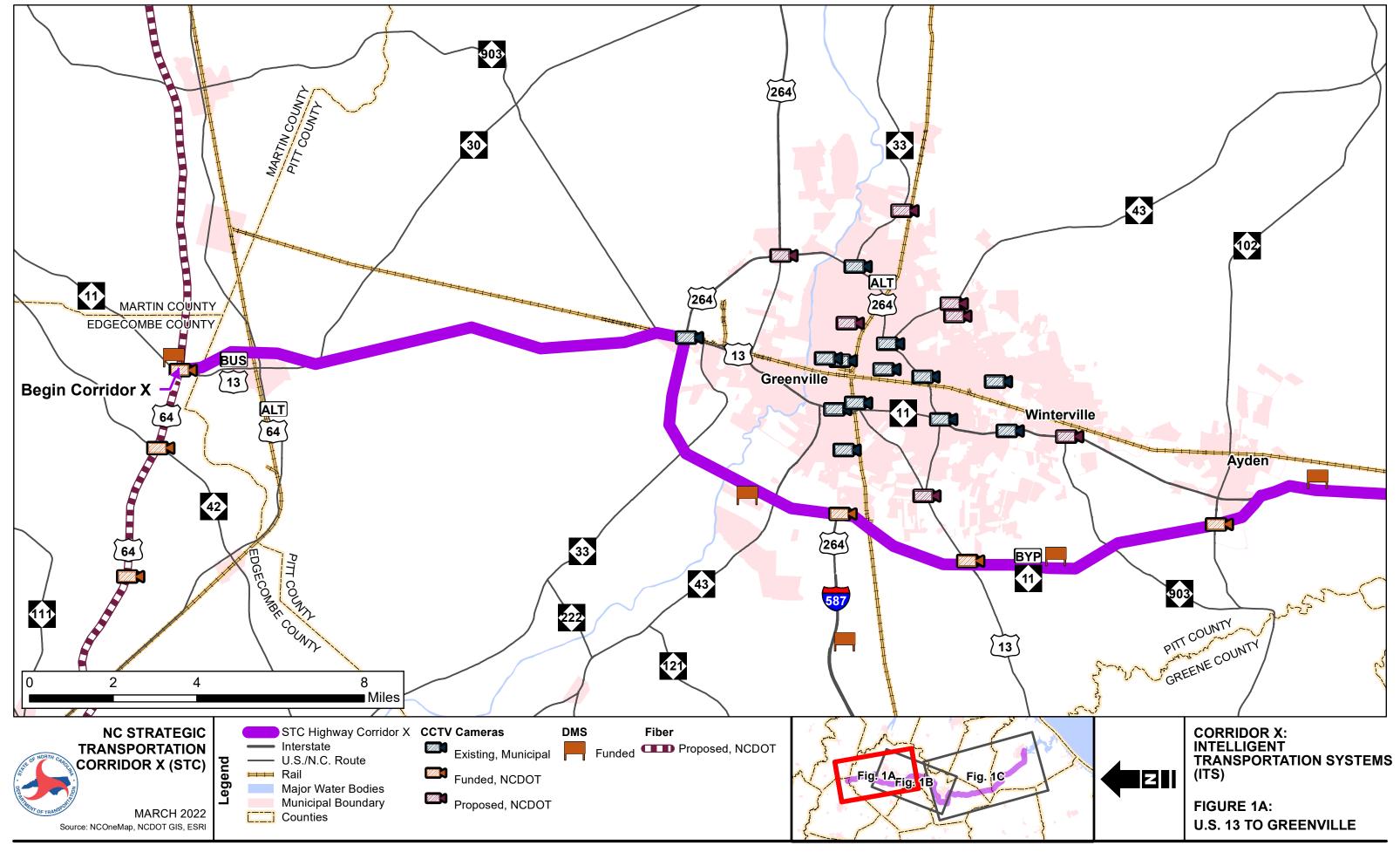
Arterial Strategies	Description
Connected Vehicle (CV) Notifications	Using roadside and onboard (in-vehicle) units to collect data and
	alert motorists. These alerts can include notifications for Work
	Zone, School Zone, Signal Phasing and Timing (SPaT), and other
	critical traveler information.
Traffic Counting	Counting vehicular traffic to create a complete picture of traffic flows
	along the corridor; this can be used during an evacuation to provide
	more information to law enforcement and to the traffic management
	center (TMC).
Pedestrian Notification [for visually	Notification, typically an audible alert, provided to pedestrians with
impaired]	visual impairment, specifically at signalized intersections;
	notifications are provided through an application or other roadside
	unit to warn of an approaching vehicle.
Transit Applications	Interface between transit management centers and traffic
	management centers (TMCs) that can support the following
	functionalities: transit schedule information, personalized transit
	route requests, multi-modal coordination between transit agencies
	and other types of public transportation, typically through a mobile or
	desktop app.

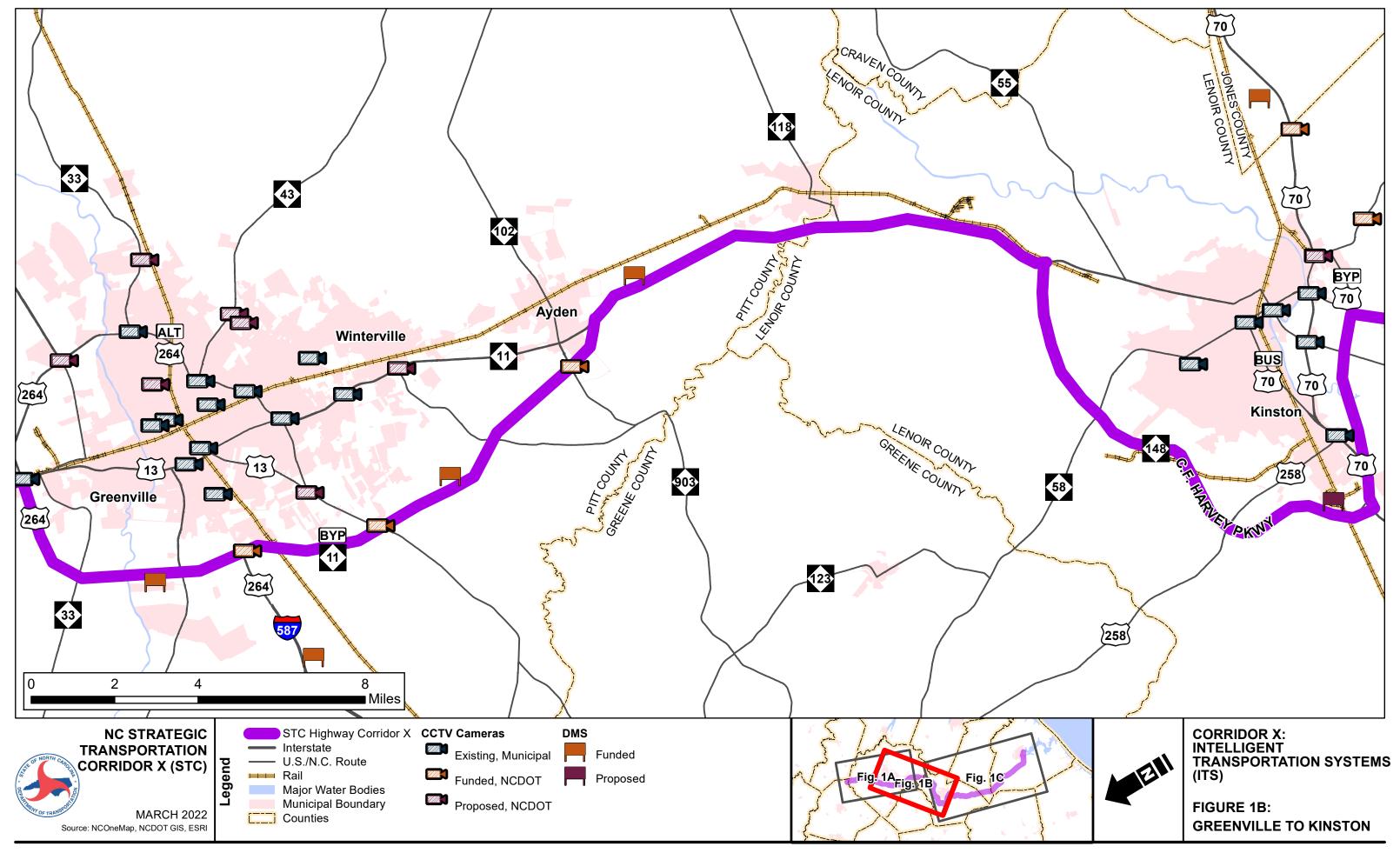
Table 2. Additional Strategies

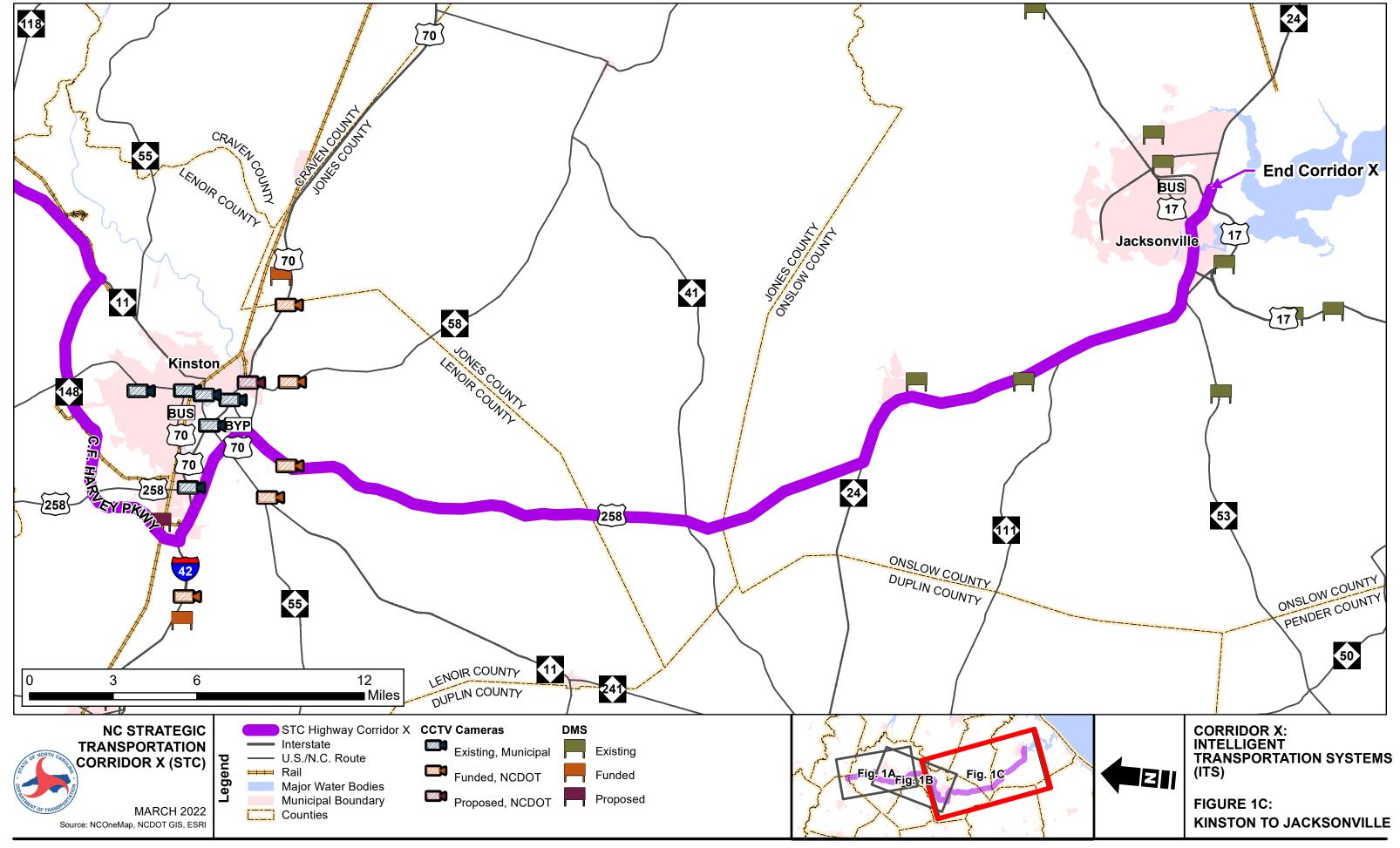
Additional Strategies	Description
Travel Time Analysis	Collecting, analyzing, and disseminating the time it will take to arrive
	at the next point on DMS to provide additional traveler information to
	motorists. These are typically based on distance between exits.
Traveler Information for	Providing information to motorists on which route should be taken,
Bypass Routing	specifically when used as a detour.
Hard Shoulder Running (HSR)	Utilizing the shoulder as a travel lane during specified hours of the
	day to relieve congestion, or during certain events such as a
	hurricane evacuation. HSR is sometimes accompanied and
	supported by dynamic lane-use control signs.
Incident Reporting and Notification	Collecting and disseminating information about an incident that
	occurred along the corridor in a timely manner for the motorist to
	make decisions.
Hard Braking Analysis	Pulling information from vehicle onboard units to analyze and
	identify areas that are prone to quick, sudden braking to determine if
	additional warnings are needed for motorists.
Wireless Emergency Alert (WEA)	Providing advance warning to motorists of an emergency vehicle
and/or Emergency Vehicle Alert	ahead and instructing the motorists to move over – providing a safer
(EVA) systems	environment for first responders.

Additional Strategies	Description
Predictive Traffic Analysis	Forecasting traffic patterns using real time traffic speeds, traffic
	congestion, and environmental data. This enables early identification
	of traffic jams so preventive measures could be taken to alleviate the
	congestion.
Freight Connections to Economic	Coordinating the process of freight movement along the corridor to
Centers	their final destination. This could be done through platooning and
	operational coordination between operation centers.
Integrated Corridor Management	Coordinating multiple networks to create one interconnected system
(ICM)	in order to route motorists from the freeway to an adjacent
	facility/alternate route to address congestion during an incident.
Signal Preemption	Providing a specific vehicle type the right of way through a signal –
	denoted with a green indication at the signal. This typically is used
	for transit, freight, emergency vehicles (EV).
Road Weather Information System	Devices placed in specific locations that collect a variety of weather
(RWIS)	data used to support maintenance decisions or provide additional
	situational awareness along the corridor. The devices including wind
	sensors, water depth sensors, CCTV cameras, etc.
Wrong Way Driving (WWD) Detection	Detecting vehicles traveling the wrong way – either along a ramp or
	on the roadway itself – and notifying the driver they are traveling in
	the wrong direction; an alert can also be sent to law enforcement
	and TMCs.
Incident Management Assistance	Providing on-scene assistance such as motorist services, traffic
Patrol (IMAP) Services	control for an incident in the roadway, and quick clearance of
	incident scenes. These services enhance the safety for motorists
	and first responders, as well as reduce the likelihood of a secondary
	crash.
Bridge Messages	Collected data (i.e., incident, ice, flood) on/around specific bridges
	used to automate messages to warn motorists of potential hazards.
Ramp Metering	Using signals to help regulate the flow of traffic entering freeways.
	Ramp meters are sometimes accompanied by variable speed limits.
Heavy Tow Program	Utilizing a performance-based contract with companies that have
	tow trucks capable of moving heavy equipment, such as tractor
	trailers, along designated corridors more quickly and efficiently than
	the typical tow rotation process.
Truck Parking	Designated locations, typically cooperative partnerships between
	public and private lots, for secure and safe truck parking. The
	parking locations are designated either through signs along the
	freeway and/or an app the truck drivers are able to access to note
	the number of open spots.


Additional Strategies	Description
Automated Flood Warning Systems	Instruments (gages) installed at rivers or streams that include
	sensors for detecting changes to set parameters for measuring
	either precipitation volume or water levels. These systems can
	support proactive/predictive road warnings and/or closures.


2.3 Mitigations


There are always risks involved when deploying infrastructure or the need for additional technology. The following mitigations should be considered during deployment of the strategies noted above in **Table 1** and **Table 2**.


- Power to the devices the Department may need to consider alternative or backup power sources such as solar, to power the devices
- Operational strategies in the event of an evacuation closing interchanges, extended lane merge, signal coordination, etc.
- Security credential management system (SCMS) to ensure integrity and authenticity of data
- Funding for maintenance of the infrastructure/devices ensuring devices stay operational to provide the situational awareness to the statewide transportation operations center (STOC)
- Hard shoulder running and extended merge areas require design considerations, such as rumble-strip location, truck lane restrictions (e.g., not on the shoulder), width of paved shoulder, and depth of shoulder pavement.

Appendices

